Set Code :	T2
Booklet Code :	В

115.			al condition for parallel operation of two single phase transformers is that they should ity (2) KVA rating (3) Voltage ratio (4) Percentage impedance of a synchronous motor is a plot of current versus stator power factor recurrent versus rotor current at all loads recurrent versus rotor currents when power delivered is constant recurrent versus power delivered operation of induction motor runs with a slip of 0.03 when developing full load torque. Its ance is 0.25 ohm per phase. If an external resistance 0.50 ohm per phase is connected only rings, what is the slip for full load torque? (2) 0.06 (3) 0.09 (4) 0.1 developed in a three phase induction motor depends on flux and rotor current (2) stator flux and stator current current and rotor flux (4) rotor current and rotor flux ase ac induction motor is not self starting because it has inp (2) rotor is short circuited intertia (4) absence of rotating magnetic field (2) a stationary magnetic field						
	(1)	$\theta_e = P \times \theta_m$			(2)	$\theta_{\rm e} = (P/2) \times \theta_{\rm m}$			
	(3)	$\theta_{e}^{}=\theta_{m}^{}/P$			(4)	$\theta_e = P/\theta_m$			×
116.			tion for	parallel operati	on of tv	vo single phase t	transfo	rmers is that th	ney should
	(1)	Polarity	(2)	KVA rating ·	(3)	Voltage ratio	(4)	Percentage i	mpedance
117.	The	V-curve of a sy	nchron	ous motor is a p	olot of				
		synchronous motor, then which one of the following respectively. The essential condition for parallel operation of two single have same (1) Polarity (2) KVA rating (3) Volt (4) $\theta_e = 1$ (5) The essential condition for parallel operation of two single have same (1) Polarity (2) KVA rating (3) Volt (4) The V-curve of a synchronous motor is a plot of (5) State current versus stator power factor (6) Stator current versus rotor currents when power of the estimated states are stated as a state of the estimated states are s							
0						ds		18	
			versus	rotor currents v	when po	ower delivered i	is cons	tant	
					_				
	. ,								
synch (1) (3) (3) (4) (1) (1) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	r resistance is 0	.25 ohn	per phase. If a	n exter	nal resistance 0.		•		
	(1)	0.03	(2)	0.06	(3)	0.09	(4)	0.1	
119.	The	torque develop	ed in a	three phase indi	uction r	notor depends of	n .		
	synchrono (1) $\theta_e = P$ (3) $\theta_e = \theta$ 16. The essent have same (1) Polar 17. The V-curv (1) State (2) Stato (3) Stato (4) Stato (4) Stato (5) Stato (6) Stato (7) Polar 18. A wound resist across the state of the stato 19. The torque (1) Stato (2) Stato (3) stato (4) Stato (5) Polar (6) Stato (7) Polar (8) Stato (9) Stato (10) Polar (11) Stato (12) Stato (13) Stato (14) Stato (15) Stato (16) Stato (17) Stato (18) Stato (19) Stato	Stator flux an	d rotor	current	(2)	stator flux and	stator	current	
	(3)	stator current	and rot	or flux	(4)	rotor current a	nd rote	or flux	
120.	A si	ngle phase ac ir	nduction	n motor is not s	f the following relation is true? (2) $\theta_e = (P/2) \times \theta_m$ (4) $\theta_e = P/\theta_m$ eration of two single phase transformers is that they should g (3) Voltage ratio (4) Percentage impedance is a plot of r factor mt at all loads nts when power delivered is constant vered with a slip of 0.03 when developing full load torque. Its If an external resistance 0.50 ohm per phase is connected or full load torque? (3) 0.09 (4) 0.1 induction motor depends on (2) stator flux and stator current (4) rotor current and rotor flux not self starting because it has (2) rotor is short circuited (4) absence of rotating magnetic field see motor produces (2) a stationary magnetic field				
						•		ed	
	(3)	high intertia			(4)	absence of rota	ating n	nagnetic field	
		1370			100.000				
121.	A si	ngle phase wind	ling in a	single phase m	otor pr	oduces			
	(1)	an alternating	magnet	ic field	(2)	a stationary ma	agnetic	field	2.7
	(3)	a rotating mag	netic fi	eld	(4)	a steady magne	etic fie	ld	
				¥0.00					

122.	Und	er no-load cond	itions	, power factor of	an in	duction motor is	about		
	(1)	0.2 lag	(2)	0.9 lag	(3)	Unity	(4)	0.5 lead	
123.	Ofa	ll the plants, min	imum	quantity of fuel	used i	s required in	. plan	t.	
	(1)	Diesel power	(2)	Steam	(3)	Hydro-electric	(4)	Nuclear	
124.	The	overall efficienc	y (η)	of a Thermal Pov	wer St	ation is			
	(1)	η_{boiler}	(2)	$\eta_{\text{boiler}} \times \eta_{\text{generator}}$	(3)	$\boldsymbol{\eta}_{\text{generator}} \times \boldsymbol{\eta}_{\text{turbine}}$	(4)	$\eta_{\text{turbine}} \times$	η_{boiler}
125.	The	effect of water h	amme	er can be minimiz	zed by	using .	œ		
	(1)	Spill way	(2)	Anvil	(3)	Surge Tank	(4)	Draft tu	be
126.	In a	diesel power plan	nt sus	pended impuritie	s in th	ne fuel are remove	ed by		
	(1)	Cyclone separa	tors		(2)	Electrostatic se	parate	ors	
	(3)	Fabric filters	93		(4)	Strainer			
127	Tl			ainouit huooleani		ound in			
127.							(4)	3.7 _{0.14}	
	(1)	Ampere	(2)	voit-Ampere	(3)	watt	(4)	voit	
128.	A ci	rcuit breaker is e	ssenti	ally					
	(1)	An arc extingui	sher				21		
	(2)	A current interr	upting	device					
(3) Fabric filters (4) Strainer 127. The rupturing capacity of a circuit breaker is measured in (1) Ampere (2) Volt-Ampere (3) Watt (4) Volt 128. A circuit breaker is essentially (1) An arc extinguisher (2) A current interrupting device (3) A power factor correcting device									
	(4)	A device for ne	utralia	zing the effect of	trans	ients			
					•				
129.		relay normally			of				
	(1)	Long transmiss							
	(2)	Medium Transn							9
	(3)	Short transmiss	ion li	nes					
	(4)	No length crite	rion	9					

				Set Code: T2
(3) over current protection (4) reverse power pro 131. Due to the ferrari effect on long overhead lines (1) receiving end voltage is less than sending voltage (2) receiving end voltage is more than sending voltage (3) receiving end voltage is equal to sending voltage (4) receiving end voltage is not effected 132. Corona occurs between two transmission lines when they are (1) closely spaced (2) widely spaced (3) having high potential difference (4) carrying DC power 133. Surge impedence of a transmission line is given by (1) √(L/C) (2) √(C/L) (3) √LC (4) 134. The general distance for short transmission line is (1) less than 80 km (2) 80 km-250 km (3) more than 250 km (4) 150 km-300 km 135. The resistance of the line (1) increases with increase in frequency (2) decreases with increase with decreases with decrease with	Booklet Code : B			
130). The	e scheme adopted for bus-bar protection	n is	
	(1)	spilt-phase protection	(2)	differential protection
	(3)	over current protection	(4)	reverse power protection
131	. Du	e to the ferrari effect on long overhead	llines	<u> </u>
	(1)	receiving end voltage is less than sen	ding v	voltage
	(2)	receiving end voltage is more than se	nding	voltage
	(3)	receiving end voltage is equal to send	ling v	oltage
	(4)	receiving end voltage is not effected		
132	. Cor	rona occurs between two transmission	lines v	when they are
				· · · · · · · · · · · · · · · · · · ·
	(3)	having high potential difference	(4)	
133	. Sur	ge impedence of a transmission line is	given	by
	(1)	$\sqrt{(L/C)}$ (2) $\sqrt{(C/L)}$	(3)	\sqrt{LC} (4) $1\sqrt{LC}$
134.	The	general distance for short transmissio	n line	is
			1.5	
	(3)	more than 250 km		
135.	The	resistance of the line	6	
	(1)	increases with increase in frequency	(2)	decreases with increase in frequency
	(3)			increases with decrease in frequency
136.	In H	VDC Transmission System AC is conve	erted t	o DC using
		Rectifier (2) Inverter	(3)	

(3) 11 KV

137. Suspension type insulators are used for voltages beyond

(2) 400 V

(1) 220 V

(4) 33 KV

									Set	Code:	T2
					*			38	Booklet	• Vatt	
138.	Pow	er Factor of	Indu	strial	loads is general	lly					
	(1)	Unity		(2)	Leading	(3)	Lagging	(4)	Zero		
139.	Pole	mounted to	ansfo	ormer	stations are me	ant for					
	(1)	Primary tr	ansm	ission	1	(2)	Primary dist	ribution			
	(3)	Secondary	tran	smissi	on .	(4)	Secondary d	istributio	on .		
Bookle 138. Power Factor of Industrial loads is generally (1) Unity (2) Leading (3) Lagging (4) Zero 139. Pole mounted transformer stations are meant for (1) Primary transmission (2) Primary distribution											
	(1)	Reduce co	pper	loss							
	(2)	Reduce sk	in ef	fect						6. 0. 5.	
	(3)	Prevent in	terfe	rence	with communic	ation l	ines				
	(4)	Present sh	ort ci	ircuit	between condu	ctors					
-				-							
141.	The	units for sp	ecific	ener	gy consumption	n relate	d to traction i	s			17
	- 1	Watt - Ho	111		Watt - Hour				•		
	(1)			(2)		(3)	Joules/Sec	(4)	Watt		
								*			
142.	In K	ando system	n of	track	electrification_		is conver	ted into			
	(1)	single pha	se, do	;		(2)	dc, single ph	ase	60		
	(3)	single pha	se, th	ree ph	nase	(4)	three phase,	single pl	nase		
143.								ch are 6	km apart.	The act	ual run
	time	is	if		10(0)(1)(d)						
	(1)	60 sec		(2)	360 sec	(3)	240 sec	(4)	300 sec	-	
144.	Ave	rage speed o	of a tr	ain is	dependent on						
	(1)	Distance b	etwee	en two	stops & run tim	e	¥		20		
	(2)	Run time	& sto	p time	•						

(3) Stop time & acceleration(4) Acceleration & deceleration

Set Code :	T2
Booklet Code :	

145	. The	e electric motor used for traction work	shoul	d have							
		Low starting torque	(2)								
	(3)										
146.	Tra	ctive effort of an electric locomotive c	an be	increased by							
	(1)	Increasing the supply voltage		5455 OV W							
	(2)	Increasing the speed									
	(3)	Increasing the dead weight over the d	riving	axles							
	(4)	Using high rating motors									
147.	Trac	ctive effort required for a train going do	wn fr	om an upgradiant is							
	(1)	less than tractive effort on level track		· Commence							
20	(2)	more than tractive effort on level trac	ck								
	(3)										
	(4)	independent of mass of the train									
148.	The	area under speed-time curve of a train	repres	ents							
	(1)	average speed	(2)	average acceleration							
	(3)	distance travelled	(4)	average velocity							
149.	As t	he number of wire guage increases the	cross	sectional area of wire							
	(1)	increases	(2)	remains same							
	(3)	becomes neglible	(4)	decreases							
150.	Whi	ch of the following wiring is not visible	e outsi	de?							
	(1)	conduit wiring	(2)	cleat wiring	29						
	(3)	casing and capping wiring	(4)	concealed wiring							
151.	Resi	stance of earth system of power station	ns sho	uld not exceed the limit of							
	(1)	0.5 ohms (2) 2 ohms	(3)	1 ohms (4) 5 ohms							

Set Code :	T2
Booklet Code :	

152. In e	lectrical insta	llations t	he fuse is alw	vays conn	ected in		wire.	
	earth		neutral		phase	(4)	ground	
153. The	transistor use	ed in amp	lifier circuits	operates	in			
(1)	Active region	on		(2)	Saturation reg	gion		
(3)	Cut off region	on		(4)	Reverse region	on		
154. The	gain of an am	plifier is	given by the	following	formula			
(1)	G(dB) = 10	log (p _{in} /p	out)	(2)	G(dB) = 10 le	og (pout)		
(3)	G(dB) = 10	log (p _{out} /	p _{in})	(4)	G(dB) = 10 l	og (p _{in})		
155. The	number of die	odes that	are used in ha	alf wave 1	ectifier and fu	ll wave t	oridge rec	tifier
(1)	1,2	(2)	1,4	(3)	2,4	(4).	2,1	
	average voltag Iz is	ge of a ful	l wave rectifie	er fed fron	an ac source o	f peak vo	oltage, V _m	and t
50F							oltage, V _m	and:
50F (1)	Iz is	(2)	$2V_{\rm m}/\pi$	(3)	$V_m/\sqrt{2}$			and
50H (1) 157. In a	Hz is V_m/π	(2)	$2V_{\rm m}/\pi$	(3) yer is ligh	$V_m/\sqrt{2}$	(4)		and
50F (1) 157. In a (1)	Iz is V_m/π transistor whi	(2) ich of the (2)	$2V_m/\pi$ following la	(3) yer is ligh	$V_m/\sqrt{2}$	(4)	V _m /2	and
50F (1) 157. In a (1) 158. Zen	Iz is V_{m}/π transistor white	(2) ich of the (2)	$2V_m/\pi$ following la	(3) yer is ligh	V _m /√2 ntly doped Drain	(4)	V _m /2	and:
50F (1) 157. In a (1) 158. Zen (1)	Iz is V_m/π transistor which is transistor which is the condition of th	(2) ich of the (2) lates (2)	2V _m /π following la Collector Current	(3) yer is ligh (3)	V _m /√2 ntly doped Drain Resistance	(4)	V _m /2 Base	and i
50F (1) 157. In a (1) 158. Zen (1)	Iz is V _m /π transistor white Emitter ter diode regulation Voltage	(2) ich of the (2) lates (2) coscillation	2V _m /π following la Collector Current	(3) yer is ligh (3) (3)	V _m /√2 ntly doped Drain Resistance	(4)	V _m /2 Base	and
50F (1) 157. In a (1) 158. Zen (1) 159. The (1)	Iz is V _m /π transistor white Emitter ter diode regulated Voltage frequency of	(2) ich of the (2) lates (2) coscillation (2)	$2V_m/\pi$ following la Collector Current on of wein br $2 \pi RC$	(3) yer is ligh (3) (3)	V _m /√2 Itly doped Drain Resistance	(4)	V _m /2 Base	and i

www.sakshieducation.com

								Booklet Code	B
161.	The	2's complemen	nt of the	e number 100	1 1100 is	(19
	(1)	0110 0011	(2)	0110 0100	(3)	1001 1100	(4)	1001 1101	
162.	The	bolean express	ion for	NOR gate wit	h inputs	A and B is			
	(1)	A+B	(2)	A.B	(3)	A+B	(4)	$\overline{A+B}$	
163.	ΑD	AC with 8 inpu	t bits h	as	resolutio	on compared wit	h DA	C with 4 input bit	s.
	(1)	High	(2)	Same	(3)	Low	(4)	Infinite	
161. The 2's complement of the number 1001 1100 is (1) 0110 0011 (2) 0110 0100 (3) 1001 1100 (4) 1001 1101 162. The bolean expression for NOR gate with inputs A and B is (1) A+B (2) A.B (3) A+B (4) A+B 163. A DAC with 8 input bits has resolution compared with DAC with 4 input bits.									
	(1)	Two junctions	and th	ree layers	(2)	Three junction	s and	three layers	
	(3)	Three junction	ns and i	four layers	(4)	Two junctions	and tw	o layers	
165.	Whi	ch one of the fo	llowin	g is a bidirect	ional Cor	ntrolled switch			
	(1)	Thyristor	(2)	Triac	(3)	GTO	(4)	Diac	
166.	Ifth	e gate current o	f an SC	R is increased	l, its forw	ard break over	voltag	e V _{BO} will	
	(1)	Increase	(2)	Decrease	(3)	Not be affected	d (4)	Be infinity	
167.	Ìn ar	uJT triggering	ent of the number 1001 1100 is (2) 0110 0100 (3) 1001 1100 (4) 1001 1101 sion for NOR gate with inputs A and B is (2) AB (3) A+B (4) $\overline{A+B}$ at bits has resolution compared with DAC with 4 input bits. (2) Same (3) Low (4) Infinite nic device, Silicon Controlled Rectifier has and three layers (2) Three junctions and three layers are sons and four layers (4) Two junctions and two layers following is a bidirectional Controlled switch (2) Triac (3) GTO (4) Diac of an SCR is increased, its forward break over voltage V_{BO} will (2) Decrease (3) Not be affected (4) Be infinity and circuit for SCR, pulses are generated at of UJT. (2) Base 1 (B1) (3) Base 2 (B2) (4) B1-B2 trolled rectifier feeding R-L load, the range of firing angle of thyristor is (2) $90 \le \alpha \le 180^{\circ}$ (3) $0 \le \alpha \le 90^{\circ}$ (4) $0 \le \alpha \le 360^{\circ}$ tage, V_{o} of a basic chopper circuit with input voltage, V_{in} and duty cycle, δ is						
	(1)	Emitter (E)	(2)	Base 1 (B1)	(3)	Base 2(B2)	(4)	B1-B2	
168.	ln a	half wave contr	olled r	ectifier feedin	g R-L loa	ad, the range of	firing	angle of thyristo	ris
	(1)	$0 \le \alpha \le 180^{\circ}$	(2)	$90 \le \alpha \le 180$)° (3)	$0 \le \alpha \le 90^{\circ}$	(4)	$0 \le \alpha \le 360^{\circ}$	
	give	n by							ele, δ is
	(1)	$V_{o} = V_{in} \times \delta$	(2)	$V_o = V_{in} / \delta$	(3)	$V_o = V_{in}/(1-\delta)$	(4)	$V_{o} = V_{in}$	

Set Code:	T2
Booklet Code :	В

170. An.	AC regulator p	provides								
(1)	Variable free	quency, fix	xed mag	gnitudeA	C					
(2)	Fixed freque	ency, varia	ble mag	gnitude A	C					
(3)	Fixed freque	ency, fixed	l magni	tude AC						
(4)	Variable free	quency, va	riable n	nagnitude	AC					
171. The	output voltag	e of a sing	gle phas	e bridge	inver	ter is				
(1)	Square wave				(2)	Sinusoida	l wave			
(3)	Constant de			8	(4)	Triangula	rwave			
172. Two	quadrant ope	ration of	de moto	or can be	obtai	ned if it is	fed from a			
(1)							rolled conv	ertor		
(3)	Half wave co	ncontrolled convertor alf wave convertor				Fully con				
173. For	controlling the	e speed of	fa 3 nh	ase induc	tion	motor V/fr	atio is mair	· ntained co	nstant fo)r
(1)		1117	p.i.		(2)			itumed co	notant ro	
(3)	Varying the a		X _e			Variable r				
174. 805	I microcontro	ller has		data line	es an	d	address	lines.		4.5
	16, 8	(2)				8, 16		16, 20		
175. Whi	ch of the follo	wing inst	ruction	is not a d	lata tı	ansfer inst	ruction?			
	XCH	-	PUSH			ADD		MOV		
76. Inter	mal memory o	of 8051 m	icro co	ntroller o	consi	sts of				
(1)	128 bytes of F	RAM, 2 K	bytes o	fROM						
(2)	4 K bytes of	RAM, 12	8 bytes	of ROM						
(3)	2 K bytes of F		•							
(4)	128 bytes of								2.2	

Set Code :	T2
Booklet Code :	В

177	. The	highest p	oriority	interr	upt is							
	(1)	TF1		(2)	IE1		(3)	TF0	(4)	IEO		
	*											
178	. Per	centage V	oltage	regula	tion of a	trans	mission	line is given	by			
	(1)	$(E_s-E_r)/$	E,*100	0			(2)	$(E_r - E_s)/E_r *$	100			
	(3)	$(E_s-E_r)/$	E _s *100	0			(4)	$(E_r - E_s)/E_s^*$	100			
179	. In a	main line	e servi	ce of e	electric ti	raction	n system	1				
	(1)	Distance	e betw	een tw	o stops i	s very	small					
	(2)	Acceler	ation a	nd ret	ardation	period	ds are sn	nall				
	(3)	Free run	ıning a	nd coa	sting per	riods a	are short					
	(4)	Acceler	ation a	nd ret	ardation	perioc	is are lo	ng				8
180	. For	SCR, dv/o	dt prot	ection	is achiev	ed by	connec	ting	_			
	(1)	L in seri	es with	1 SCR			(2)	RL in series	with SC	R		
	(3)	RC in se	ries w	ith SC	R		(4)	RC in parall	el with S	CR	* -	
			•									28
181			resista	nce be	tween te	rmina	lls A and	B in the belo	w figure	is	*	
	(1)	r 2		т.		~~	-,					
	(2) (3)	2r 3r		7		~ [~}	ᠰᢆᠮᡐ	B				
	(4)	4r				-	₩ `	_				
	(+)	41										
182.	If I b		ent, C	be the	capacita	nce an	d V be t	he potential di	ifference	s, the I/C	V will ha	ive the
	(1)	Time		(2)	Power		(3)	Frequency	(4)	Reactiv	e Power	
183.	Ina	series R-C	Ccircu	it exci	ted by a l	DC vo	oltage E,	the initial cur	rrent is			
		_						-		C		
	(1)	$\frac{E}{R}$		(2)	0	78	(3)	$\frac{2}{C}$	(4)	$\frac{\varepsilon}{E}$		
		100				3		of H		1,7704		
						112	27-B	0				(EEE)

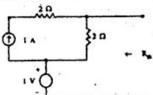
184	The strength o	of electromagnet	can	be increased	by
104.	THE SHEHRIH C	n electionnagnet	Can	oc mercuseu	0,

- (1) Decreasing the length of the conductor (2) Increasing the length of the conductor
- (3) Increasing the number of turns
- Decreasing the number of turns (4)

185. Tesla is a unit of

- (1) Flux
- (2) Field strength (3) Current
- (4) Flux density

186. According to joule's law heat produced by an electric current is proportional to


- (1) square of the resistance
- square of the current (2)

(3) potential difference

square of the time

187. The Thevenin's equivalent resistance R_{th} for given below network is

- (1) Γ_{Ω}
- $(2) \cdot 2 \Omega$
- (3) 4Ω
- (4) Infinity

188. In a differential compound generator, the series field turns are provided on

- (1) Armature
- (2) Commutator
- (3) Interpole
- (4) Main pole

189. The function of the commutator in a dc machine is

- (1) to change alternating current to direct current
- (2) to improve commutation
- (3) for easy speed control
- (4) to change alternating voltage to direct voltage

190. If N is the speed and P is number of poles, then the frequency of induced e.m.f in DC generator will be

Set Code :	T2
Booklet Code :	В

191.	The	demagnetizing f	lux in	de generator						
	(1)	Increases e.m.	f		(2)	Decreases e.m.	f			
	(3)	Increases speed	d.		(4)	Decreases spee	d			
192.		be the torque ar			ent for	a dc series motor	, ther	which of the follow	ving	
	(1)	$T_a \alpha I_a$	(2)	$T_a \alpha (1/I_a)$	(3)	$T_a \alpha (I_a^2)$	(4)	$T_a \alpha (1/I_a)^2$		
193.	Wha	at will happen if	the ba	ck e.m.f of a DC	motor	vanishes sudden	ly			
	(1)				(2)			nue to run		
	(3)	The armature n		m ·	(4)	The motor will	run n	oisy		
		3 · ·				33				
194.		mechanical pow								
	(1)	Power input +	losses		(2)					
	(3)	Power output	< losse	es	(4)	Power output ×	effic	iency		
195.		lecting saturation			a seri	ies motor is incre	eased	from 10A to 12A	, the	
	-	20%		44%	(3)	30.5%	(4)	16.6%		
196	Dvn	amometer type in	nstrun	nent have				8		
.,.,		Cramped scale			Cramped at the end					
		Cramped at the			(4)	Uniform scale				
	(3)	Cramped at the	midd		(+)	Omform scare		20.0		
197.	To measure a signal of 10 mV at 75 Hz, which one of the following instrument can be used									
		cathode ray os			(2)	VIVM	**			
	(3)	Moving Iron vo	oltmet	er	(4)	digital multime	ter			
198.	Whi	ch one of the fol	lowin	g a passive trans	ducer					
		piezolectric		thermocouple		photovoltaic ce	11	(4) LVDT		

Set Code : T2

Booklet Code : B

100 7	The voltage of	oilofa	single phase	e house energy	meter

- (1) is highly resistive
- (2) is highly inductive
- (3) is highly capacitive
- (4) has a phase angle equal to load power factor angle

200. The effective value of a triangular wave is

(1) Max. value

(2) $\sqrt{3}$ (Max. value)

(3) $\frac{\sqrt{3}}{\text{Max, value}}$

 $(4) \quad \frac{\text{Max. value}}{\sqrt{3}}$